2023 Austrian MO Regional Competition

March 30, 2023

1

Let $a$, $b$ and $c$ be real numbers with $0 \le a, b, c \le 2$. Prove that $$(a - b)(b - c)(a- c) \le 2.$$When does equality hold? (Karl Czakler)

2

Let $ABCD$ be a rhombus with $\angle BAD < 90^o$. The circle passing through $D$ with center $A$ intersects the line $CD$ a second time in point $E$. Let $S$ be the intersection of the lines $BE$ and $AC$. Prove that the points $A$, $S$, $D$ and $E$ lie on a circle. (Karl Czakler)

3

Determine all natural numbers $n \ge 2$ with the property that there are two permutations $(a_1, a_2,... , a_n) $ and $(b_1, b_2,... , b_n)$ of the numbers $1, 2,..., n$ such that $(a_1 + b_1, a_2 +b_2,..., a_n + b_n)$ are consecutive natural numbers. (Walther Janous)

4

Determine all pairs $(x, y)$ of positive integers such that for $d = gcd(x, y)$ the equation $$xyd = x + y + d^2$$holds. (Walther Janous)