Determine all natural numbers $n \ge 2$ with the property that there are two permutations $(a_1, a_2,... , a_n) $ and $(b_1, b_2,... , b_n)$ of the numbers $1, 2,..., n$ such that $(a_1 + b_1, a_2 +b_2,..., a_n + b_n)$ are consecutive natural numbers. (Walther Janous)
Problem
Source: 2023 Austrian Regional Competition For Advanced Students p3
Tags: combinatorics, permutations