Prove that for all positive real numbers $x, y$ and $z$, the double inequality $$0 < \frac{1}{x + y + z + 1} -\frac{1}{(x + 1)(y + 1)(z + 1)} \le \frac18$$holds. When does equality hold in the right inequality? (Walther Janous)
2022 Austrian MO National Competition
Preliminary Round (April 30, 2022)
The points $A, B, C, D$ lie in this order on a circle with center $O$. Furthermore, the straight lines $AC$ and $BD$ should be perpendicular to each other. The base of the perpendicular from $O$ on $AB$ is $F$. Prove $CD = 2 OF$. (Karl Czakler)
Each person stands on a whole number on the number line from $0$ to $2022$ . In each turn, two people are selected by a distance of at least $2$. These go towards each other by $1$. When no more such moves are possible, the process ends. Show that this process always ends after a finite number of moves, and determine all possible configurations where people can end up standing. (whereby is for each configuration is only of interest how many people stand at each number.) (Birgit Vera Schmidt) original wordingBei jeder ganzen Zahl auf dem Zahlenstrahl von 0 bis 2022 steht zu Beginn eine Person. In jedem Zug werden zwei Personen mit Abstand mindestens 2 ausgewählt. Diese gehen jeweils um 1 aufeinander zu. Wenn kein solcher Zug mehr möglich ist, endet der Vorgang. Man zeige, dass dieser Vorgang immer nach endlich vielen Zügen endet, und bestimme alle möglichen Konfigurationen, wo die Personen am Ende stehen können. (Dabei ist für jede Konfiguration nur von Interesse, wie viele Personen bei jeder Zahl stehen.)
Find all triples $(p, q, r)$ of prime numbers for which $4q - 1$ is a prime number and $$\frac{p + q}{p + r} = r - p$$holds. (Walther Janous)
Final Round, Day 1 (May 25, 2022)
Find all functions $f : Z_{>0} \to Z_{>0}$ with $a - f(b) | af(a) - bf(b)$ for all $a, b \in Z_{>0}$. (Theresia Eisenkoelbl)
Let $ ABC$ be an acute-angled, non-isosceles triangle with orthocenter $H$, $M$ midpoint of side $AB$ and $w$ bisector of angle $\angle ACB$. Let $S$ be the point of intersection of the perpendicular bisector of side $AB$ with $w$ and $F$ the foot of the perpendicular from $H$ on $w$. Prove that the segments $MS$ and $MF$ are equal. (Karl Czakler)
Lisa writes a positive whole number in the decimal system on the blackboard and now makes in each turn the following: The last digit is deleted from the number on the board and then the remaining shorter number (or 0 if the number was one digit) becomes four times the number deleted number added. The number on the board is now replaced by the result of this calculation. Lisa repeats this until she gets a number for the first time was on the board. (a) Show that the sequence of moves always ends. (b) If Lisa begins with the number $53^{2022} - 1$, what is the last number on the board? Example: If Lisa starts with the number $2022$, she gets $202 + 4\cdot 2 = 210$ in the first move and overall the result $$2022 \to 210 \to 21 \to 6 \to 24 \to 18 \to 33 \to 15 \to 21$$. Since Lisa gets $21$ for the second time, the turn order ends. (Stephan Pfannerer)
Final Round, Day 2 (May 26, 2022)
Decide whether for every polynomial $P$ of degree at least $1$, there exist infinitely many primes that divide $P(n)$ for at least one positive integer $n$. (Walther Janous)
Let $ABC$ be an isosceles triangle with base $AB$. We choose a point $P$ inside the triangle on altitude through $C$. The circle with diameter $CP$ intersects the straight line through $B$ and $P$ again at the point $D_P$ and the Straight through $A$ and $C$ one more time at point $E_P$. Prove that there is a point $F$ such that for any choice of $P$ the points $D_P , E_P$ and $F$ lie on a straight line. (Walther Janous)
(a) Prove that a square with sides $1000$ divided into $31$ squares tiles, at least one of which has a side length less than $1$. (b) Show that a corresponding decomposition into $30$ squares is also possible. (Walther Janous)