Problem

Source: 2022 Austrian Federal Competition For Advanced Students, Part 2 p2

Tags: geometry, equal segments, orthocenter



Let $ ABC$ be an acute-angled, non-isosceles triangle with orthocenter $H$, $M$ midpoint of side $AB$ and $w$ bisector of angle $\angle ACB$. Let $S$ be the point of intersection of the perpendicular bisector of side $AB$ with $w$ and $F$ the foot of the perpendicular from $H$ on $w$. Prove that the segments $MS$ and $MF$ are equal. (Karl Czakler)