2024 Benelux

1

Let $a_0,a_1,\dots,a_{2024}$ be real numbers such that $\left|a_{i+1}-a_i\right| \le 1$ for $i=0,1,\dots,2023$. a) Find the minimum possible value of $$a_0a_1+a_1a_2+\dots+a_{2023}a_{2024}$$b) Does there exist a real number $C$ such that $$a_0a_1-a_1a_2+a_2a_3-a_3a_4+\dots+a_{2022}a_{2023}-a_{2023}a_{2024} \ge C$$for all real numbers $a_0,a_1,\dots,a_2024$ such that $\left|a_{i+1}-a_i\right| \le 1$ for $i=0,1,\dots,2023$.

2

Let $n$ be a positive integer. In a coordinate grid, a path from $(0,0)$ to $(2n,2n)$ consists of $4n$ consecutive unit steps $(1,0)$ or $(0,1)$. Prove that the number of paths that divide the square with vertices $(0,0),(2n,0),(2n,2n),(0,2n)$ into 2 regions with even areas is $$\frac{{4n \choose 2n} + {2n \choose n}}{2}$$

3

Let $ABC$ be a triangle with incentre $I$ and circumcircle $\Omega$ such that $\left|AC\right|\neq\left|BC\right|$. The internal angle bisector of $\angle CAB$ intersects side $BC$ at $D$ and the external angle bisectors of $\angle ABC$ and $\angle BCA$ intersect $\Omega$ at $E$ and $F$ respectively. Let $G$ be the intersection of lines $AE$ and $FI$ and let $\Gamma$ be the circumcircle of triangle $BDI$. Show that $E$ lies on $\Gamma$ if and only if $G$ lies on $\Gamma$.

4

For each positive integer $n$, let $rad(n)$ denote the product of the distinct prime factors of $n$. Show that there exists integers $a,b > 1$ such that $gcd(a,b)=1$ and $$rad(ab(a+b)) < \frac{a+b}{2024^{2024}}$$. For example, $rad(20)=rad(2^2\cdot 5)=2\cdot 5=10$.