Problem

Source: 2024 BxMO P4

Tags: number theory



For each positive integer $n$, let $rad(n)$ denote the product of the distinct prime factors of $n$. Show that there exists integers $a,b > 1$ such that $gcd(a,b)=1$ and $$rad(ab(a+b)) < \frac{a+b}{2024^{2024}}$$. For example, $rad(20)=rad(2^2\cdot 5)=2\cdot 5=10$.