2012 China Girls Math Olympiad

August 10th - Day 1

1

Let $ a_1, a_2,\ldots, a_n$ be non-negative real numbers. Prove that $\frac{1}{1+ a_1}+\frac{ a_1}{(1+ a_1)(1+ a_2)}+\frac{ a_1 a_2}{(1+ a_1)(1+ a_2)(1+ a_3)}+$ $\cdots+\frac{ a_1 a_2\cdots a_{n-1}}{(1+ a_1)(1+ a_2)\cdots (1+ a_n)} \le 1.$

2

Circles $Q_1$ and $Q_2$ are tangent to each other externally at $T$. Points $A$ and $E$ are on $Q_1$, lines $AB$ and $DE$ are tangent to $Q_2$ at $B$ and $D$, respectively, lines $AE$ and $BD$ meet at point $P$. Prove that (1) $\frac{AB}{AT}=\frac{ED}{ET}$; (2) $\angle ATP + \angle ETP = 180^{\circ}$. [asy][asy]import graph; size(5.97cm); real lsf=0.5; pathpen=linewidth(0.7); pointpen=black; pen fp=fontsize(10); pointfontpen=fp; real xmin=-6,xmax=5.94,ymin=-3.19,ymax=3.43; pair Q_1=(-2.5,-0.5), T=(-1.5,-0.5), Q_2=(0.5,-0.5), A=(-2.09,0.41), B=(-0.42,1.28), D=(-0.2,-2.37), P=(-0.52,2.96); D(CR(Q_1,1)); D(CR(Q_2,2)); D(A--B); D((-3.13,-1.27)--D); D(P--(-3.13,-1.27)); D(P--D); D(T--(-3.13,-1.27)); D(T--A); D(T--P); D(Q_1); MP("Q_1",(-2.46,-0.44),NE*lsf); D(T); MP("T",(-1.46,-0.44),NE*lsf); D(Q_2); MP("Q_2",(0.54,-0.44),NE*lsf); D(A); MP("A",(-2.22,0.58),NE*lsf); D(B); MP("B",(-0.35,1.45),NE*lsf); D((-3.13,-1.27)); MP("E",(-3.52,-1.62),NE*lsf); D(D); MP("D",(-0.17,-2.31),NE*lsf); D(P); MP("P",(-0.47,3.02),NE*lsf); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy][/asy]

3

Find all pairs $(a,b)$ of integers satisfying: there exists an integer $d \ge 2$ such that $a^n + b^n +1$ is divisible by $d$ for all positive integers $n$.

4

There is a stone at each vertex of a given regular $13$-gon, and the color of each stone is black or white. Prove that we may exchange the position of two stones such that the coloring of these stones are symmetric with respect to some symmetric axis of the $13$-gon.

August 11th - Day 2

5

As shown in the figure below, the in-circle of $ABC$ is tangent to sides $AB$ and $AC$ at $D$ and $E$ respectively, and $O$ is the circumcenter of $BCI$. Prove that $\angle ODB = \angle OEC$. [asy][asy]import graph; size(5.55cm); pathpen=linewidth(0.7); pointpen=black; pen fp=fontsize(10); pointfontpen=fp; real xmin=-5.76,xmax=4.8,ymin=-3.69,ymax=3.71; pen zzttqq=rgb(0.6,0.2,0), wwwwqq=rgb(0.4,0.4,0), qqwuqq=rgb(0,0.39,0); pair A=(-2,2.5), B=(-3,-1.5), C=(2,-1.5), I=(-1.27,-0.15), D=(-2.58,0.18), O=(-0.5,-2.92); D(A--B--C--cycle,zzttqq); D(arc(D,0.25,-104.04,-56.12)--(-2.58,0.18)--cycle,qqwuqq); D(arc((-0.31,0.81),0.25,-92.92,-45)--(-0.31,0.81)--cycle,qqwuqq); D(A--B,zzttqq); D(B--C,zzttqq); D(C--A,zzttqq); D(CR(I,1.35),linewidth(1.2)+dotted+wwwwqq); D(CR(O,2.87),linetype("2 2")+blue); D(D--O); D((-0.31,0.81)--O); D(A); D(B); D(C); D(I); D(D); D((-0.31,0.81)); D(O); MP( "A", A, dir(110)); MP("B", B, dir(140)); D("C", C, dir(20)); D("D", D, dir(150)); D("E", (-0.31, 0.81), dir(60)); D("O", O, dir(290)); D("I", I, dir(100)); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy][/asy]

6

There are $n$ cities, $2$ airline companies in a country. Between any two cities, there is exactly one $2$-way flight connecting them which is operated by one of the two companies. A female mathematician plans a travel route, so that it starts and ends at the same city, passes through at least two other cities, and each city in the route is visited once. She finds out that wherever she starts and whatever route she chooses, she must take flights of both companies. Find the maximum value of $n$.

7

Let $\{a_n\}$ be a sequence of nondecreasing positive integers such that $\textstyle\frac{r}{a_r} = k+1$ for some positive integers $k$ and $r$. Prove that there exists a positive integer $s$ such that $\textstyle\frac{s}{a_s} = k$.

8

Find the number of integers $k$ in the set $\{0, 1, 2, \dots, 2012\}$ such that $\binom{2012}{k}$ is a multiple of $2012$.