Problem

Source: 2012 China Girl's Mathematical Olympiad

Tags: search, analytic geometry, number theory, number theory unsolved



Let $\{a_n\}$ be a sequence of nondecreasing positive integers such that $\textstyle\frac{r}{a_r} = k+1$ for some positive integers $k$ and $r$. Prove that there exists a positive integer $s$ such that $\textstyle\frac{s}{a_s} = k$.