2023 Simon Marais Mathematical Competition

A2

Let $n$ be a positive integer and let $f_1(x), f_2(x) \dots f_n(x)$ be affine functions from $\mathbb{R}$ to $\mathbb{R}$ such that, amongst the graph of these functions, no two are parallel and no three are concurrent. Let $S$ be the set of all convex functions $g(x)$ from $\mathbb{R}$ to $\mathbb{R}$ such that for each $x \in \mathbb{R}$, there exists $i$ such that $g(x) = f_i(x)$. Determine the largest and smallest possible values of $|S|$ in terms of $n$. (A function $f(x)$ is affine if it is of form $f(x) = ax + b$ for some $a, b \in \mathbb{R}$. A function $g(x)$ is convex if $g(\lambda x + (1 - \lambda) y) \leq \lambda g(x) + (1-\lambda)g(y)$ for all $x, y \in \mathbb{R}$ and $0 \leq \lambda \leq 1$)

A3

For each positive integer $n$, let $f(n)$ denote the smallest possible value of $$|A_1 \cup A_2 \cup \dots \cup A_n|$$where $A_1, A_2, A_3 \dots A_n$ are sets such that $A_i \not\subseteq A_j$ and $|A_i| \neq |A_j|$ whenever $i \neq j$. Determine $f(n)$ for each positive integer $n$.

A4

Let $x_0, x_1, x_2 \dots$ be a sequence of positive real numbers such that for all $n \geq 0$, $$x_{n+1} = \dfrac{(n^2+1)x_n^2}{x_n^3+n^2}$$For which values of $x_0$ is this sequence bounded?

B1

Find the smallest positive real number $r$ with the following property: For every choice of $2023$ unit vectors $v_1,v_2, \dots ,v_{2023} \in \mathbb{R}^2$, a point $p$ can be found in the plane such that for each subset $S$ of $\{1,2, \dots , 2023\}$, the sum $$\sum_{i \in S} v_i$$lies inside the disc $\{x \in \mathbb{R}^2 : ||x-p|| \leq r\}$.

B2

There are $256$ players in a tennis tournament who are ranked from $1$ to $256$, with $1$ corresponding to the highest rank and $256$ corresponding to the lowest rank. When two players play a match in the tournament, the player whose rank is higher wins the match with probability $\frac{3}{5}$. In each round of the tournament, the player with the highest rank plays against the player with the second highest rank, the player with the third highest rank plays against the player with the fourth highest rank, and so on. At the end of the round, the players who win proceed to the next round and the players who lose exit the tournament. After eight rounds, there is one player remaining and they are declared the winner. Determine the expected value of the rank of the winner.

B3

Let $n$ be a positive integer. Let $A,B,$ and $C$ be three $n$-dimensional vector subspaces of $\mathbb{R}^{2n}$ with the property that $A \cap B = B \cap C = C \cap A = \{0\}$. Prove that there exist bases $\{a_1,a_2, \dots, a_n\}$ of $A$, $\{b_1,b_2, \dots, b_n\}$ of $B$, and $\{c_1,c_2, \dots, c_n\}$ of $C$ with the property that for each $i \in \{1,2, \dots, n\}$, the vectors $a_i,b_i,$ and $c_i$ are linearly dependent.

B4

(The following problem is open in the sense that the answer to part (b) is not currently known.) Let $n$ be a positive integer that is not a perfect square. Find all pairs $(a,b)$ of positive integers for which there exists a positive real number $r$, such that $$r^a+\sqrt{n} \ \ \text{and} \ \ r^b+\sqrt{n}$$are both rational numbers. Let $n$ be a positive integer that is not a perfect square. Find all pairs $(a,b)$ of positive integers for which there exists a real number $r$, such that $$r^a+\sqrt{n} \ \ \text{and} \ \ r^b+\sqrt{n}$$are both rational numbers.