Problem

Source: Simon Marais Mathematics Competition 2023 Paper A Problem 3

Tags: combinatorics



For each positive integer $n$, let $f(n)$ denote the smallest possible value of $$|A_1 \cup A_2 \cup \dots \cup A_n|$$where $A_1, A_2, A_3 \dots A_n$ are sets such that $A_i \not\subseteq A_j$ and $|A_i| \neq |A_j|$ whenever $i \neq j$. Determine $f(n)$ for each positive integer $n$.