2016 Bulgaria EGMO TST

Day 1

1

Find all positive integers $x$ such that $3^x + x^2 + 135$ is a perfect square.

2

Let $ABC$ be a right triangle with $\angle ACB = 90^{\circ}$ and centroid $G$. The circumcircle $k_1$ of triangle $AGC$ and the circumcircle $k_2$ of triangle $BGC$ intersect $AB$ at $P$ and $Q$, respectively. The perpendiculars from $P$ and $Q$ respectively to $AC$ and $BC$ intersect $k_1$ and $k_2$ at $X$ and $Y$. Determine the value of $\frac{CX \cdot CY}{AB^2}$.

3

The eyes of a magician are blindfolded while a person $A$ from the audience arranges $n$ identical coins in a row, some are heads and the others are tails. The assistant of the magician asks $A$ to write an integer between $1$ and $n$ inclusive and to show it to the audience. Having seen the number, the assistant chooses a coin and turns it to the other side (so if it was heads it becomes tails and vice versa) and does not touch anything else. Afterwards, the bandages are removed from the magician, he sees the sequence and guesses the written number by $A$. For which $n$ is this possible? Spoiler hintThe original formulation asks: a) Show that if $n$ is possible, so is $2n$; b) Show that only powers of $2$ are possible; I have omitted this from the above formulation, for the reader's interest.

Day 2

1

Is it possible to partition the set of integers into three disjoint sets so that for every positive integer $n$ the numbers $n$, $n-50$ and $n+1987$ belong to different sets?

3

Prove that there is no function $f:\mathbb{R}^{+} \to \mathbb{R}^{+}$ such that $f(x)^2 \geq f(x+y)(f(x)+y)$ for all $x,y \in \mathbb{R}^{+}$.