Problem

Source: Bulgaria IMO/Balkan MO 1998 TST and EGMO TST 2016, Day 2, Problem 3

Tags: function, inequalities



Prove that there is no function $f:\mathbb{R}^{+} \to \mathbb{R}^{+}$ such that $f(x)^2 \geq f(x+y)(f(x)+y)$ for all $x,y \in \mathbb{R}^{+}$.