Circles $C_1$ and $C_2$ intersect at different points $A$ and $B$. The straight lines tangents to $C_1$ that pass through $A$ and $B$ intersect at $T$. Let $M$ be a point on $C_1$ that is out of $C_2$. The $MT$ line intersects $C_1$ at $C$ again, the $MA$ line intersects again to $C_2$ in $K$ and the line $AC$ intersects again to the circumference $C_2$ in $L$. Prove that the $MC$ line passes through the midpoint of the $KL$ segment.
2014 Peru Iberoamerican Team Selection Test
Day 1
Let $n\ge 4$ be an integer. You have two $n\times n$ boards. Each board contains the numbers $1$ to $n^2$ inclusive, one number per square, arbitrarily arranged on each board. A move consists of exchanging two rows or two columns on the first board (no moves can be made on the second board). Show that it is possible to make a sequence of moves such that for all $1 \le i \le n$ and $1 \le j \le n$, the number that is in the $i-th$ row and $j-th$ column of the first board is different from the number that is in the $i-th$ row and $j-th$ column of the second board.
A positive integer $n$ is called $special$ if there exist integers $a > 1$ and $b > 1$ such that $n=a^b + b$. Is there a set of $2014$ consecutive positive integers that contains exactly $2012$ $special$ numbers?
Day 2
Determine the minimum value of $$x^{2014} + 2x^{2013} + 3x^{2012} + 4x^{2011} +\ldots + 2014x + 2015$$where $x$ is a real number.
The incircle $\odot (I)$ of $\triangle ABC$ touch $AC$ and $AB$ at $E$ and $F$ respectively. Let $H$ be the foot of the altitude from $A$, if $R \equiv IC \cap AH, \ \ Q \equiv BI \cap AH$ prove that the midpoint of $AH$ lies on the radical axis between $\odot (REC)$ and $\odot (QFB)$ I hope that this is not repost
Determine the largest positive integer $k$ for which there exists a simple graph $G$ of $2014$ vertices that simultaneously satisfies the following conditions: $a)$ $G$ does not contain triangles $b)$ For each $i$ between $1$ and $k$, inclusive, at least one vertex of $G$ has degree $i$ $c)$ No vertex of $G$ has a degree greater than $k$