A positive integer $n$ is called $special$ if there exist integers $a > 1$ and $b > 1$ such that $n=a^b + b$. Is there a set of $2014$ consecutive positive integers that contains exactly $2012$ $special$ numbers?
Source: 2014 Peru Ibero TST P3
Tags: number theory
A positive integer $n$ is called $special$ if there exist integers $a > 1$ and $b > 1$ such that $n=a^b + b$. Is there a set of $2014$ consecutive positive integers that contains exactly $2012$ $special$ numbers?