Let $n$ be a positive integer. There is a pawn in one of the cells of an $n\times n$ table. The pawn moves from an arbitrary cell of the $k$th column, $k \in \{1,2, \cdots, n \}$, to an arbitrary cell in the $k$th row. Prove that there exists a sequence of $n^{2}$ moves such that the pawn goes through every cell of the table and finishes in the starting cell.
2008 Bulgaria Team Selection Test
Day 1
The point $P$ lies inside, or on the boundary of, the triangle $ABC$. Denote by $d_{a}$, $d_{b}$ and $d_{c}$ the distances between $P$ and $BC$, $CA$, and $AB$, respectively. Prove that $\max\{AP,BP,CP \} \ge \sqrt{d_{a}^{2}+d_{b}^{2}+d_{c}^{2}}$. When does the equality holds?
Let $\mathbb{R}^{+}$ be the set of positive real numbers. Find all real numbers $a$ for which there exists a function $f :\mathbb{R}^{+} \to \mathbb{R}^{+}$ such that $3(f(x))^{2}=2f(f(x))+ax^{4}$, for all $x \in \mathbb{R}^{+}$.
Day 2
For each positive integer $n$, denote by $a_{n}$ the first digit of $2^{n}$ (base ten). Is the number $0.a_{1}a_{2}a_{3}\cdots$ rational?
In the triangle $ABC$, $AM$ is median, $M \in BC$, $BB_{1}$ and $CC_{1}$ are altitudes, $C_{1} \in AB$, $B_{1} \in AC$. The line through $A$ which is perpendicular to $AM$ cuts the lines $BB_{1}$ and $CC_{1}$ at points $E$ and $F$, respectively. Let $k$ be the circumcircle of $\triangle EFM$. Suppose also that $k_{1}$ and $k_{2}$ are circles touching both $EF$ and the arc $EF$ of $k$ which does not contain $M$. If $P$ and $Q$ are the points at which $k_{1}$ intersects $k_{2}$, prove that $P$, $Q$, and $M$ are collinear.
Let $G$ be a directed graph with infinitely many vertices. It is known that for each vertex the outdegree is greater than the indegree. Let $O$ be a fixed vertex of $G$. For an arbitrary positive number $n$, let $V_{n}$ be the number of vertices which can be reached from $O$ passing through at most $n$ edges ( $O$ counts). Find the smallest possible value of $V_{n}$.