2007 Bulgaria Team Selection Test

Day 1

1

Let $ABC$ is a triangle with $\angle BAC=\frac{\pi}{6}$ and the circumradius equal to 1. If $X$ is a point inside or in its boundary let $m(X)=\min(AX,BX,CX).$ Find all the angles of this triangle if $\max(m(X))=\frac{\sqrt{3}}{3}.$

2

Find all $a\in\mathbb{R}$ for which there exists a non-constant function $f: (0,1]\rightarrow\mathbb{R}$ such that \[a+f(x+y-xy)+f(x)f(y)\leq f(x)+f(y)\] for all $x,y\in(0,1].$

3

Let $I$ be the center of the incircle of non-isosceles triangle $ABC,A_{1}=AI\cap BC$ and $B_{1}=BI\cap AC.$ Let $l_{a}$ be the line through $A_{1}$ which is parallel to $AC$ and $l_{b}$ be the line through $B_{1}$ parallel to $BC.$ Let $l_{a}\cap CI=A_{2}$ and $l_{b}\cap CI=B_{2}.$ Also $N=AA_{2}\cap BB_{2}$ and $M$ is the midpoint of $AB.$ If $CN\parallel IM$ find $\frac{CN}{IM}$.

4

Let $G$ is a graph and $x$ is a vertex of $G$. Define the transformation $\varphi_{x}$ over $G$ as deleting all incident edges with respect of $x$ and drawing the edges $xy$ such that $y\in G$ and $y$ is not connected with $x$ with edge in the beginning of the transformation. A graph $H$ is called $G-$attainable if there exists a sequece of such transformations which transforms $G$ in $H.$ Let $n\in\mathbb{N}$ and $4|n.$ Prove that for each graph $G$ with $4n$ vertices and $n$ edges there exists $G-$attainable graph with at least $9n^{2}/4$ triangles.

Day 2

1

In isosceles triangle $ABC(AC=BC)$ the point $M$ is in the segment $AB$ such that $AM=2MB,$ $F$ is the midpoint of $BC$ and $H$ is the orthogonal projection of $M$ in $AF.$ Prove that $\angle BHF=\angle ABC.$

2

Let $n,k$ be positive integers such that $n\geq2k>3$ and $A= \{1,2,...,n\}.$ Find all $n$ and $k$ such that the number of $k$-element subsets of $A$ is $2n-k$ times bigger than the number of $2$-element subsets of $A.$

3

Let $n\geq 2$ is positive integer. Find the best constant $C(n)$ such that \[\sum_{i=1}^{n}x_{i}\geq C(n)\sum_{1\leq j<i\leq n}(2x_{i}x_{j}+\sqrt{x_{i}x_{j}})\] is true for all real numbers $x_{i}\in(0,1),i=1,...,n$ for which $(1-x_{i})(1-x_{j})\geq\frac{1}{4},1\leq j<i \leq n.$

4

Let $p=4k+3$ be a prime number. Find the number of different residues mod p of $(x^{2}+y^{2})^{2}$ where $(x,p)=(y,p)=1.$