Problem

Source: Bulgarian TST 2007 for Balkan MO and ARO, I day Problem 4

Tags: inequalities, combinatorics proposed, combinatorics



Let $G$ is a graph and $x$ is a vertex of $G$. Define the transformation $\varphi_{x}$ over $G$ as deleting all incident edges with respect of $x$ and drawing the edges $xy$ such that $y\in G$ and $y$ is not connected with $x$ with edge in the beginning of the transformation. A graph $H$ is called $G-$attainable if there exists a sequece of such transformations which transforms $G$ in $H.$ Let $n\in\mathbb{N}$ and $4|n.$ Prove that for each graph $G$ with $4n$ vertices and $n$ edges there exists $G-$attainable graph with at least $9n^{2}/4$ triangles.