2022 Saudi Arabia JBMO TST

Day I

1

The positive $n > 3$ called ‘nice’ if and only if $n +1$ and $8n + 1$ are both perfect squares. How many positive integers $k \le 15$ such that $4n + k$ are composites for all nice numbers $n$?

2

Let $BB'$, $CC'$ be the altitudes of an acute-angled triangle $ABC$. Two circles passing through $A$ and $C'$ are tangent to $BC$ at points $P$ and $Q$. Prove that $A, B', P, Q$ are concyclic.

3

$2000$ consecutive integers (not necessarily positive) are written on the board. A student takes several turns. On each turn, he partitions the $2000$ integers into $1000$ pairs, and substitutes each pair by the difference arid the sum of that pair (note that the difference does not need to be positive as the student may choose to subtract the greater number from the smaller one; in addition, all the operations are carried simultaneously). Prove that the student will never again write $2000$ consecutive integers on the board.

4

Determine the smallest positive integer $a$ for which there exist a prime number $p$ and a positive integer $b \ge 2$ such that $$\frac{a^p -a}{p}=b^2.$$

Day II

1

Find all pairs of positive prime numbers $(p, q)$ such that $$p^5 + p^3 + 2 = q^2 - q.$$

2

Consider non-negative real numbers $a, b, c$ satisfying the condition $a^2 + b^2 + c^2 = 2$ . Find the maximum value of the following expression $$P=\frac{\sqrt{b^2+c^2}}{3-a}+\frac{\sqrt{c^2+a^2}}{3-b}+a+b-2022c$$

3

Let $BB_1$ and $CC_1$ be the altitudes of acute-angled triangle $ABC$, and $A_0$ is the midpoint of $BC$. Lines $A_0B_1$ and $A_0C_1$ meet the line passing through $A$ and parallel to $BC$ at points $P$ and $Q$. Prove that the incenter of triangle $PA_0Q$ lies on the altitude of triangle $ABC$.

4

You plan to organize your birthday party, which will be attended either by exactly $m$ persons or by exactly $n$ persons (you are not sure at the moment). You have a big birthday cake and you want to divide it into several parts (not necessarily equal), so that you are able to distribute the whole cake among the people attending the party with everybody getting cake of equal mass (however, one may get one big slice, while others several small slices - the sizes of slices may differ). What is the minimal number of parts you need to divide the cake, so that it is possible, regardless of the number of guests.