Determine the smallest positive integer $a$ for which there exist a prime number $p$ and a positive integer $b \ge 2$ such that $$\frac{a^p -a}{p}=b^2.$$
Source: 2022 Saudi Arabia JBMO TST 1.4
Tags: number theory, Perfect Square
Determine the smallest positive integer $a$ for which there exist a prime number $p$ and a positive integer $b \ge 2$ such that $$\frac{a^p -a}{p}=b^2.$$