2014 Chile National Olympiad

1

Let $a, b,c$ real numbers that are greater than $ 0$ and less than $1$. Show that there is at least one of these three values $ab(1-c)^2$, $bc(1-a)^2$ , $ca(1- b)^2$ which is less than or equal to $\frac{1}{16}$ .

2

Consider an $ABCD$ parallelogram of area $1$. Let $E$ be the center of gravity of the triangle $ABC, F$ the center of gravity of the triangle $BCD, G$ the center of gravity of the triangle $CDA$ and $H$ the center of gravity of the triangle $DAB$. Calculate the area of quadrilateral $EFGH$.

3

In the plane there are $2014$ plotted points, such that no $3$ are collinear. For each pair of plotted points, draw the line that passes through them. prove that for every three of marked points there are always two that are separated by an amount odd number of lines.

4

Prove that for every integer $n$ the expression $n^3-9n + 27$ is not divisible by $81$.

5

Prove that if a quadrilateral $ABCD$ can be cut into a finite number of parallelograms, then $ABCD$ is a parallelogram.

6

Prove that for every set of $2n$ lines in the plane, such that there are no two parallel lines, there are two lines that divide the plane into four quadrants such that in each quadrant the number of unbounded regions is equal to $n$. [asy][asy] unitsize(1cm); pair[] A, B; pair P, Q, R, S; A[1] = (0,5.2); B[1] = (6.1,0); A[2] = (1.5,5.5); B[2] = (3.5,0); A[3] = (6.8,5.5); B[3] = (1,0); A[4] = (7,4.5); B[4] = (0,4); P = extension(A[2],B[2],A[4],B[4]); Q = extension(A[3],B[3],A[4],B[4]); R = extension(A[1],B[1],A[2],B[2]); S = extension(A[1],B[1],A[3],B[3]); fill(P--Q--S--R--cycle, palered); fill(A[4]--(7,0)--B[1]--S--Q--cycle, paleblue); draw(A[1]--B[1]); draw(A[2]--B[2]); draw(A[3]--B[3]); draw(A[4]--B[4]); label("Bounded region", (3.5,3.7), fontsize(8)); label("Unbounded region", (5.4,2.5), fontsize(8)); [/asy][/asy]