Problem

Source: Chile Finals 2014 L2 p6

Tags: combinatorics, combinatorial geometry, lines



Prove that for every set of $2n$ lines in the plane, such that there are no two parallel lines, there are two lines that divide the plane into four quadrants such that in each quadrant the number of unbounded regions is equal to $n$. [asy][asy] unitsize(1cm); pair[] A, B; pair P, Q, R, S; A[1] = (0,5.2); B[1] = (6.1,0); A[2] = (1.5,5.5); B[2] = (3.5,0); A[3] = (6.8,5.5); B[3] = (1,0); A[4] = (7,4.5); B[4] = (0,4); P = extension(A[2],B[2],A[4],B[4]); Q = extension(A[3],B[3],A[4],B[4]); R = extension(A[1],B[1],A[2],B[2]); S = extension(A[1],B[1],A[3],B[3]); fill(P--Q--S--R--cycle, palered); fill(A[4]--(7,0)--B[1]--S--Q--cycle, paleblue); draw(A[1]--B[1]); draw(A[2]--B[2]); draw(A[3]--B[3]); draw(A[4]--B[4]); label("Bounded region", (3.5,3.7), fontsize(8)); label("Unbounded region", (5.4,2.5), fontsize(8)); [/asy][/asy]