2022 Azerbaijan Junior National Olympiad

A1

Find the minimum positive value of $ 1*2*3*4*...*2020*2021*2022$ where you can replace $*$ as $+$ or $-$

N2

If $x,y,z \in\mathbb{N}$ and $2x^2+3y^3=4z^4$, Prove that $6|x,y,z$

A3

Let $x,y,z \in \mathbb{R}^{+}$ and $x^2+y^2+z^2=x+y+z$. Prove that $$x+y+z+3 \ge 6 \sqrt[3]{\frac{xy+yz+zx}{3}}$$

C4

There is a $8*8$ board and the numbers $1,2,3,4,...,63,64$. In all the unit squares of the board, these numbers are places such that only $1$ numbers goes to only one unit square. Prove that there is atleast $4$ $2*2$ squares such that the sum of the numbers in $2*2$ is greater than $100$.

G5

Let $ABC$ be an acute triangle and $G$ be the intersection of the meadians of triangle $ABC$. Let $D $be the foot of the altitude drawn from $A$ to $BC$. Draw a parallel line such that it is parallel to $BC$ and one of the points of it is $A$.Donate the point $S$ as the intersection of the parallel line and circumcircle $ABC$. Prove that $S,G,D$ are co-linear [asy][asy] size(6cm); defaultpen(fontsize(10pt)); pair A = dir(50), S = dir(130), B = dir(200), C = dir(-20), G = (A+B+C)/3, D = foot(A, B, C); draw(A--B--C--cycle, black+linewidth(1)); draw(A--S^^A--D, magenta); draw(S--D, red+dashed); draw(circumcircle(A, B, C), heavymagenta); string[] names = {"$A$", "$B$", "$C$","$D$", "$G$","$S$"}; pair[] points = {A, B, C,D,G,S}; pair[] ll = {A, B, C,D, G,S}; int pt = names.length; for (int i=0; i<pt; ++i) dot(names[i], points[i], dir(ll[i])); [/asy][/asy]