Problem

Source: Azerbaijan 2022 Junior National Olympiad

Tags: Inequality, algebra, Azerbaijan, Junior, inequalities



Let $x,y,z \in \mathbb{R}^{+}$ and $x^2+y^2+z^2=x+y+z$. Prove that $$x+y+z+3 \ge 6 \sqrt[3]{\frac{xy+yz+zx}{3}}$$