2022 Azerbaijan BMO TST

G1

Let $ABC$ be a triangle with $AB < AC < BC$. On the side $BC$ we consider points $D$ and $E$ such that $BA = BD$ and $CE = CA$. Let $K$ be the circumcenter of triangle $ADE$ and let $F$, $G$ be the points of intersection of the lines $AD$, $KC$ and $AE$, $KB$ respectively. Let $\omega_1$ be the circumcircle of triangle $KDE$, $\omega_2$ the circle with center $F$ and radius $FE$, and $\omega_3$ the circle with center $G$ and radius $GD$. Prove that $\omega_1$, $\omega_2$, and $\omega_3$ pass through the same point and that this point of intersection lies on the line $AK$.

A2

Find all functions $f : R \to R$ with $f (x + yf(x + y))= y^2 + f(x)f(y)$ for all $x, y \in R$.

C3

In an exotic country, the National Bank issues coins that can take any value in the interval $[0, 1]$. Find the smallest constant $c > 0$ such that the following holds, no matter the situation in that country: Any citizen of the exotic country that has a finite number of coins, with a total value of no more than $1000$, can split those coins into $100$ boxes, such that the total value inside each box is at most $c$.

N4*

A natural number $n$ is given. Determine all $(n - 1)$-tuples of nonnegative integers $a_1, a_2, ..., a_{n - 1}$ such that $$\lfloor \frac{m}{2^n - 1}\rfloor + \lfloor \frac{2m + a_1}{2^n - 1}\rfloor + \lfloor \frac{2^2m + a_2}{2^n - 1}\rfloor + \lfloor \frac{2^3m + a_3}{2^n - 1}\rfloor + ... + \lfloor \frac{2^{n - 1}m + a_{n - 1}}{2^n - 1}\rfloor = m$$holds for all $m \in \mathbb{Z}$.