Problem

Source: BMO Shortlist 2021

Tags: Balkan, shortlist, 2021, geometry, concurrency



Let $ABC$ be a triangle with $AB < AC < BC$. On the side $BC$ we consider points $D$ and $E$ such that $BA = BD$ and $CE = CA$. Let $K$ be the circumcenter of triangle $ADE$ and let $F$, $G$ be the points of intersection of the lines $AD$, $KC$ and $AE$, $KB$ respectively. Let $\omega_1$ be the circumcircle of triangle $KDE$, $\omega_2$ the circle with center $F$ and radius $FE$, and $\omega_3$ the circle with center $G$ and radius $GD$. Prove that $\omega_1$, $\omega_2$, and $\omega_3$ pass through the same point and that this point of intersection lies on the line $AK$.