2015 Thailand TSTST

Number Theory Quiz

1

Find all primes $1 < p < 100$ such that the equation $x^2-6y^2=p$ has an integer solution $(x, y)$.

2

Determine the least integer $n > 1$ such that the quadratic mean of the first $n$ positive integers is an integer. Note: the quadratic mean of $a_1, a_2, \dots , a_n$ is defined to be $\sqrt{\frac{a_1^2+a_2^2+\cdots+a_n^2}{n}}$.

Algebra Quiz

1

Prove that the Fibonacci sequence $\{F_n\}^\infty_{n=1}$ defined by $F_1 = F_2 = 1$ and $F_{n+2} = F_{n+1}+F_n$ for all $n \geq 1$ is a divisibility sequence, that is, if $m\mid n$ then $F_m \mid F_n$ for all positive integers $m$ and $n$.

2

Let $\{F_n\}^\infty_{n=1}$ be the Fibonacci sequence and let $f$ be a polynomial of degree $1006$ such that $f(k) = F_k$ for all $k \in \{1008, \dots , 2014\}$. Prove that $$233\mid f(2015)+1.$$ Note: $F_1=F_2=1$ and $F_{n+2}=F_{n+1}+F_n$ for all $n\geq 1$.

Number Theory Exam

1

Prove that there exist infinitely many integers $n$ such that $n, n + 1, n + 2$ are each the sum of two squares of integers.

2

Find all integer solutions to the equation $y^2=2x^4+17$.

3

Find the maximum number of colors used in coloring integers $n$ from $49$ to $94$ such that if $a, b$ (not necessarily different) have the same color but $c$ has a different color, then $c$ does not divide $a+b$.

Functional Equations Exam

1

Find all functions $f: \mathbb R \to \mathbb R$ such that for all reals $x$ and $y$, \[f(f(x)-y^{2})=f(x)^{2}-2f(x)y^{2}+f(f(y)).\]

2

Find all functions $f: \mathbb R \to \mathbb R$ such that for all reals $x$ and $y$, \[f(f(x - y)) = f(x)f(y) + f(x) - f(y) - xy.\]

Inequalities Quiz

1

Let $x, y, z$ be positive real numbers satisfying $x + y + z =\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}$. Prove that $$\frac{3}{2}\leq\frac{3}{\sqrt[3]{xyz}(\sqrt[3]{xyz}+1)}\leq\frac{1}{x(y+1)}+\frac{1}{y(z+1)}+\frac{1}{z(x+1)}.$$

2

Let $a, b, c \geq 1$. Prove that $$\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\geq\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}.$$

Geometry Exam

1

Let $O$ be the circumcenter of an acute $\vartriangle ABC$ which has altitude $AD$. Let $AO$ intersect the circumcircle of $\vartriangle BOC$ again at $X$. If $E$ and $F$ are points on lines $AB$ and $AC$ such that $\angle XEA = \angle XFA = 90^o$ , then prove that the line $DX$ bisects the segment $EF$.

2

Let $ABCDEF$ be a hexagon inscribed in a circle (with vertices in that order) with $\angle B + \angle C > 180^o$ and $\angle E + \angle F > 180^o$. Let the lines $AB$ and $CD$ intersect at $X$ and the lines $AF$ and $DE$ intersect at $S$. Let $XY$ and $ST$ be the diameters of the circumcircles of $\vartriangle BCX$ and $\vartriangle EFS$ respectively. If $U$ is the intersection point of the lines $BX$ and $ES$ and $V$ is the intersection point of the lines $BY$ and $ET,$ prove that the lines $UV, XY$ and $ST$ are all parallel.

3

The circles $S_{1}$ and $S_{2}$ intersect at $M$ and $N$.Show that if vertices $A$ and $C$ of a rectangle $ABCD$ lie on $S_{1}$ while vertices $B$ and $D$ lie on $S_{2}$,then the intersection of the diagonals of the rectangle lies on the line $MN$.

Inequalities Exam

1

Let $a, b, c$ be positive real numbers. Prove that $$\frac{a}{a+\sqrt{(a+b)(a+c)}}+\frac{b}{b+\sqrt{(b+c)(b+a)}}+\frac{c}{c+\sqrt{(c+a)(c+b)}}\leq\frac{2a^2+ab}{(b+\sqrt{ca}+c)^2}+\frac{2b^2+bc}{(c+\sqrt{ab}+a)^2}+\frac{2c^2+ca}{(a+\sqrt{bc}+b)^2}.$$

2

Let $a, b, c\in (0, 1)$ with $a + b + c = 1$. Prove that $$\frac{a^5+b^5}{a^3+b^3}+\frac{b^5+c^5}{b^3+c^3}+\frac{c^5+a^5}{c^3+a^3}\geq\frac{a}{8+b^3+c^3}+\frac{b}{8+c^3+a^3}+\frac{c}{8+a^3+b^3}.$$

3

Let $a, b, c$ be positive real numbers. Prove that $$\frac {3(ab + bc + ca)}{2(a^2b^2+b^2c^2+c^2a^2)}\leq \frac1{a^2 + bc} + \frac1{b^2 + ca} + \frac1{c^2 + ab}\leq\frac{a+b+c}{2abc}.$$

Functional Equations Quiz

1

Let $A$ and $B$ be nonempty sets and let $f : A \to B$. Prove that the following statements are equivalent: $\text{(i) }$ $f$ is surjective. $\text{(ii)} $ For every set $C$ and and every functions $g, h : B \to C$, if $g\circ f = h \circ f$ then $g = h$.

2

Let $\mathbb{N} = \{1, 2, 3, \dots\}$ and let $f : \mathbb{N}\to\mathbb{R}$. Prove that there is an infinite subset $A$ of $\mathbb{N}$ such that $f$ is increasing on $A$ or $f$ is decreasing on $A$.

Combinatorics Quiz

1

A sequence $a_0, a_1, \dots , a_n, \dots$ of positive integers is constructed as follows: If the last digit of $a_n$ is less than or equal to $5$, then this digit is deleted and $a_{n+1}$ is the number consisting of the remaining digits. (If $a_{n+1}$ contains no digits, the process stops.) Otherwise, $a_{n+1}= 9a_n$. Can one choose $a_0$ so that this sequence is infinite?

2

Let $C$ be the set of all 100-digit numbers consisting of only the digits $1$ and $2$. Given a number in $C$, we may transform the number by considering any $10$ consecutive digits $x_0x_1x_2 \dots x_9$ and transform it into $x_5x_6\dots x_9x_0x_1\dots x_4$. We say that two numbers in $C$ are similar if one of them can be reached from the other by performing finitely many such transformations. Let $D$ be a subset of $C$ such that any two numbers in $D$ are not similar. Determine the maximum possible size of $D$.

Algebra Exam

1

Let $a,b,c$ be a real numbers such that this equations: $a^2x + b^2y + c^2z = 1$ $xy + yz + xz = 1$ have only one solution $(x, y, z)$ in real numbers. Prove that $a, b, c$ are sides of the triangle

2

Fix a sequence $ a_1,a_2,a_3,... $ of integers satisfying the following condition:for all prime numbers $ p $ and all positive integers $ k $, we have $ a_{pk+1}=pa_k-3a_p+13 $.Determine all possible values of $ a_{2013} $.

Combinatorics Exam

1

Let $A$ be a subset of $\{1, 2, \dots , 1000000\}$ such that for any $x, y \in A$ with $x\neq y$, we have $xy\notin A$. Determine the maximum possible size of $A$.

2

Determine the number of sequences of points $(x_1, y_1),(x_2, y_2), \dots ,(x_{4570}, y_{4570})$ on the plane satisfying the following two properties: $\text{(i)}$ $\{x_1,x_2,\dots,x_{4570}\}=\{1,2,\dots,2014\}$ and $\{y_1,y_2,\dots,y_{4570}\}=\{1,2,\dots,2557\}$ $\text{(ii)} $ For each $i = 1, 2,\dots , 4569$, exactly one of $x_i = x_{i+1}$ and $y_i = y_{i+1}$ holds.

Geometry Quiz

1

Let $D$ be a point inside an acute triangle $ABC$ such that $\angle ADC = \angle A +\angle B$, $\angle BDA = \angle B + \angle C$ and $\angle CDB = \angle C + \angle A$. Prove that $\frac{AB \cdot CD}{AD} = \frac{AC \cdot CB} {AB}$.

2

In any $\vartriangle ABC, \ell$ is any line through $C$ and points $P, Q$. If $BP, AQ$ are perpendicular to the line $\ell$ and $M$ is the midpoint of the line segment $AB$, then prove that $MP = MQ$