Let $x, y, z$ be positive real numbers satisfying $x + y + z =\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}$. Prove that $$\frac{3}{2}\leq\frac{3}{\sqrt[3]{xyz}(\sqrt[3]{xyz}+1)}\leq\frac{1}{x(y+1)}+\frac{1}{y(z+1)}+\frac{1}{z(x+1)}.$$
Source: 2014 Thailand October Camp Inequalites Quiz p1
Tags: inequalities
Let $x, y, z$ be positive real numbers satisfying $x + y + z =\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}$. Prove that $$\frac{3}{2}\leq\frac{3}{\sqrt[3]{xyz}(\sqrt[3]{xyz}+1)}\leq\frac{1}{x(y+1)}+\frac{1}{y(z+1)}+\frac{1}{z(x+1)}.$$