Let the sequence $a_1,a_2,\ldots,a_n,\ldots$ is defined by the conditions: $a_1=2$ and $a_{n+1}=a_n^2-a_n+1$ $(n=1,2,\ldots)$. Prove that: (a) $a_m$ and $a_n$ are relatively prime numbers when $m\ne n$. (b) $\lim_{n\to\infty}\sum_{k=1}^n\frac1{a_k}=1$ I. Tonov
1973 Bulgaria National Olympiad
Day 1
Let the numbers $a_1,a_2,a_3,a_4$ form an arithmetic progression with difference $d\ne0$. Prove that there are no exists geometric progressions $b_1,b_2,b_3,b_4$ and $c_1,c_2,c_3,c_4$ such that: $$a_1=b_1+c_1,a_2=b_2+c_2,a_3=b_3+c_3,a_4=b_4+c_4.$$
Let $a_1,a_2,\ldots,a_n$ are different integer numbers in the range $[100,200]$ for which: $a_1+a_2+\ldots+a_n\ge11100$. Prove that it can be found at least number from the given in the representation of decimal system on which there are at least two equal digits. L. Davidov
Day 2
Find all functions $f(x)$ defined in the range $\left(-\frac\pi2,\frac\pi2\right)$ that are differentiable at $0$ and satisfy $$f(x)=\frac12\left(1+\frac1{\cos x}\right)f\left(\frac x2\right)$$for every $x$ in the range $\left(-\frac\pi2,\frac\pi2\right)$. L. Davidov
Let the line $\ell$ intersects the sides $AC,BC$ of the triangle $ABC$ respectively at the points $E$ and $F$. Prove that the line $\ell$ is passing through the incenter of the triangle $ABC$ if and only if the following equality is true: $$BC\cdot\frac{AE}{CE}+AC\cdot\frac{BF}{CF}=AB.$$ H. Lesov
In the tetrahedron $ABCD$, $E$ and $F$ are the midpoints of $BC$ and $AD$, $G$ is the midpoint of the segment $EF$. Construct a plane through $G$ intersecting the segments $AB$, $AC$, $AD$ in the points $M,N,P$ respectively in such a way that the sum of the volumes of the tetrahedrons $BMNP$, $CMNP$ and $DMNP$ to be minimal. H. Lesov