Problem

Source: Bulgaria 1973 P1

Tags: number theory, relatively prime, Sequences, limits, algebra



Let the sequence $a_1,a_2,\ldots,a_n,\ldots$ is defined by the conditions: $a_1=2$ and $a_{n+1}=a_n^2-a_n+1$ $(n=1,2,\ldots)$. Prove that: (a) $a_m$ and $a_n$ are relatively prime numbers when $m\ne n$. (b) $\lim_{n\to\infty}\sum_{k=1}^n\frac1{a_k}=1$ I. Tonov