1983 Bulgaria National Olympiad

Day 1

Problem 1

Determine all natural numbers $n$ for which there exists a permutation $(a_1,a_2,\ldots,a_n)$ of the numbers $0,1,\ldots,n-1$ such that, if $b_i$ is the remainder of $a_1a_2\cdots a_i$ upon division by $n$ for $i=1,\ldots,n$, then $(b_1,b_2,\ldots,b_n)$ is also a permutation of $0,1,\ldots,n-1$.

Problem 2

Let $b_1\ge b_2\ge\ldots\ge b_n$ be nonnegative numbers, and $(a_1,a_2,\ldots,a_n)$ be an arbitrary permutation of these numbers. Prove that for every $t\ge0$, $$(a_1a_2+t)(a_3a_4+t)\cdots(a_{2n-1}a_{2n}+t)\le(b_1b_2+t)(b_3b_4+t)\cdots(b_{2n-1}b_{2n}+t).$$

Problem 3

A regular triangular pyramid $ABCD$ with the base side $AB=a$ and the lateral edge $AD=b$ is given. Let $M$ and $N$ be the midpoints of $AB$ and $CD$ respectively. A line $\alpha$ through $MN$ intersects the edges $AD$ and $BC$ at $P$ and $Q$, respectively. (a) Prove that $AP/AD=BQ/BC$. (b) Find the ratio $AP/AD$ which minimizes the area of $MQNP$.

Day 2

Problem 4

Find the smallest possible side of a square in which five circles of radius $1$ can be placed, so that no two of them have a common interior point.

Problem 5

Can the polynomials $x^{5}-x-1$ and $x^{2}+ax+b$ , where $a,b\in Q$, have common complex roots?

Problem 6

Let $a,b,c>0$ satisfy for all integers $n$, we have $$\lfloor an\rfloor+\lfloor bn\rfloor=\lfloor cn\rfloor$$Prove that at least one of $a,b,c$ is an integer.