Problem

Source: Bulgaria 1983 P2

Tags: inequalities



Let $b_1\ge b_2\ge\ldots\ge b_n$ be nonnegative numbers, and $(a_1,a_2,\ldots,a_n)$ be an arbitrary permutation of these numbers. Prove that for every $t\ge0$, $$(a_1a_2+t)(a_3a_4+t)\cdots(a_{2n-1}a_{2n}+t)\le(b_1b_2+t)(b_3b_4+t)\cdots(b_{2n-1}b_{2n}+t).$$