2018 Grand Duchy of Lithuania

1

Let $x, y, z, t$ be real numbers such that $(x^2 + y^2 -1)(z^2 + t^2 - 1) > (xz + yt -1)^2$. Prove that $x^2 + y^2 > 1$.

2

Ten distinct numbers are chosen at random from the set $\{1, 2, 3, ... , 37\}$. Show that one can select four distinct numbers out of those ten so that the sum of two of them is equal to the sum of the other two.

3

The altitudes $AD$ and $BE$ of an acute triangle $ABC$ intersect at point $H$. Let $F$ be the intersection of the line $AB$ and the line that is parallel to the side BC and goes through the circumcenter of $ABC$. Let $M$ be the midpoint of the segment $AH$. Prove that $\angle CMF = 90^o$

4

Find all positive integers $n$ for which there exists a positive integer $k$ such that for every positive divisor $d$ of $n$, the number $d - k$ is also a (not necessarily positive) divisor of $n$.