Let $x, y, z, t$ be real numbers such that $(x^2 + y^2 -1)(z^2 + t^2 - 1) > (xz + yt -1)^2$. Prove that $x^2 + y^2 > 1$.
Problem
Source: 2018 Grand Duchy of Lithuania, Mathematical Contest p1 (Baltic Way TST)
Tags: algebra, inequalities
Source: 2018 Grand Duchy of Lithuania, Mathematical Contest p1 (Baltic Way TST)
Tags: algebra, inequalities
Let $x, y, z, t$ be real numbers such that $(x^2 + y^2 -1)(z^2 + t^2 - 1) > (xz + yt -1)^2$. Prove that $x^2 + y^2 > 1$.