2019 IMO Shortlist

Algebra

A1

Let $\mathbb{Z}$ be the set of integers. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that, for all integers $a$ and $b$, $$f(2a)+2f(b)=f(f(a+b)).$$Proposed by Liam Baker, South Africa

A2

Let $u_1, u_2, \dots, u_{2019}$ be real numbers satisfying \[u_{1}+u_{2}+\cdots+u_{2019}=0 \quad \text { and } \quad u_{1}^{2}+u_{2}^{2}+\cdots+u_{2019}^{2}=1.\]Let $a=\min \left(u_{1}, u_{2}, \ldots, u_{2019}\right)$ and $b=\max \left(u_{1}, u_{2}, \ldots, u_{2019}\right)$. Prove that \[ a b \leqslant-\frac{1}{2019}. \]

A3

Let $n \geqslant 3$ be a positive integer and let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a strictly increasing sequence of $n$ positive real numbers with sum equal to 2. Let $X$ be a subset of $\{1,2, \ldots, n\}$ such that the value of \[ \left|1-\sum_{i \in X} a_{i}\right| \]is minimised. Prove that there exists a strictly increasing sequence of $n$ positive real numbers $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with sum equal to 2 such that \[ \sum_{i \in X} b_{i}=1. \]

A4

Let $n\geqslant 2$ be a positive integer and $a_1,a_2, \ldots ,a_n$ be real numbers such that \[a_1+a_2+\dots+a_n=0.\]Define the set $A$ by \[A=\left\{(i, j)\,|\,1 \leqslant i<j \leqslant n,\left|a_{i}-a_{j}\right| \geqslant 1\right\}\]Prove that, if $A$ is not empty, then \[\sum_{(i, j) \in A} a_{i} a_{j}<0.\]

A5

Let $x_1, x_2, \dots, x_n$ be different real numbers. Prove that \[\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}=\left\{\begin{array}{ll} 0, & \text { if } n \text { is even; } \\ 1, & \text { if } n \text { is odd. } \end{array}\right.\]

A6

A polynomial $P(x, y, z)$ in three variables with real coefficients satisfies the identities $$P(x, y, z)=P(x, y, xy-z)=P(x, zx-y, z)=P(yz-x, y, z).$$ Prove that there exists a polynomial $F(t)$ in one variable such that $$P(x,y,z)=F(x^2+y^2+z^2-xyz).$$

A7

Let $\mathbb Z$ be the set of integers. We consider functions $f :\mathbb Z\to\mathbb Z$ satisfying \[f\left(f(x+y)+y\right)=f\left(f(x)+y\right)\]for all integers $x$ and $y$. For such a function, we say that an integer $v$ is f-rare if the set \[X_v=\{x\in\mathbb Z:f(x)=v\}\]is finite and nonempty. (a) Prove that there exists such a function $f$ for which there is an $f$-rare integer. (b) Prove that no such function $f$ can have more than one $f$-rare integer. Netherlands

Combinatorics

C1

The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\]for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).

C2

You are given a set of $n$ blocks, each weighing at least $1$; their total weight is $2n$. Prove that for every real number $r$ with $0 \leq r \leq 2n-2$ you can choose a subset of the blocks whose total weight is at least $r$ but at most $r + 2$.

C3

The Bank of Bath issues coins with an $H$ on one side and a $T$ on the other. Harry has $n$ of these coins arranged in a line from left to right. He repeatedly performs the following operation: if there are exactly $k>0$ coins showing $H$, then he turns over the $k$th coin from the left; otherwise, all coins show $T$ and he stops. For example, if $n=3$ the process starting with the configuration $THT$ would be $THT \to HHT \to HTT \to TTT$, which stops after three operations. (a) Show that, for each initial configuration, Harry stops after a finite number of operations. (b) For each initial configuration $C$, let $L(C)$ be the number of operations before Harry stops. For example, $L(THT) = 3$ and $L(TTT) = 0$. Determine the average value of $L(C)$ over all $2^n$ possible initial configurations $C$. Proposed by David Altizio, USA

C4

On a flat plane in Camelot, King Arthur builds a labyrinth $\mathfrak{L}$ consisting of $n$ walls, each of which is an infinite straight line. No two walls are parallel, and no three walls have a common point. Merlin then paints one side of each wall entirely red and the other side entirely blue. At the intersection of two walls there are four corners: two diagonally opposite corners where a red side and a blue side meet, one corner where two red sides meet, and one corner where two blue sides meet. At each such intersection, there is a two-way door connecting the two diagonally opposite corners at which sides of different colours meet. After Merlin paints the walls, Morgana then places some knights in the labyrinth. The knights can walk through doors, but cannot walk through walls. Let $k(\mathfrak{L})$ be the largest number $k$ such that, no matter how Merlin paints the labyrinth $\mathfrak{L},$ Morgana can always place at least $k$ knights such that no two of them can ever meet. For each $n,$ what are all possible values for $k(\mathfrak{L}),$ where $\mathfrak{L}$ is a labyrinth with $n$ walls?

C5

A social network has $2019$ users, some pairs of whom are friends. Whenever user $A$ is friends with user $B$, user $B$ is also friends with user $A$. Events of the following kind may happen repeatedly, one at a time: Three users $A$, $B$, and $C$ such that $A$ is friends with both $B$ and $C$, but $B$ and $C$ are not friends, change their friendship statuses such that $B$ and $C$ are now friends, but $A$ is no longer friends with $B$, and no longer friends with $C$. All other friendship statuses are unchanged. Initially, $1010$ users have $1009$ friends each, and $1009$ users have $1010$ friends each. Prove that there exists a sequence of such events after which each user is friends with at most one other user. Proposed by Adrian Beker, Croatia

C6

Let $n>1$ be an integer. Suppose we are given $2n$ points in the plane such that no three of them are collinear. The points are to be labelled $A_1, A_2, \dots , A_{2n}$ in some order. We then consider the $2n$ angles $\angle A_1A_2A_3, \angle A_2A_3A_4, \dots , \angle A_{2n-2}A_{2n-1}A_{2n}, \angle A_{2n-1}A_{2n}A_1, \angle A_{2n}A_1A_2$. We measure each angle in the way that gives the smallest positive value (i.e. between $0^{\circ}$ and $180^{\circ}$). Prove that there exists an ordering of the given points such that the resulting $2n$ angles can be separated into two groups with the sum of one group of angles equal to the sum of the other group.

C7

There are 60 empty boxes $B_1,\ldots,B_{60}$ in a row on a table and an unlimited supply of pebbles. Given a positive integer $n$, Alice and Bob play the following game. In the first round, Alice takes $n$ pebbles and distributes them into the 60 boxes as she wishes. Each subsequent round consists of two steps: (a) Bob chooses an integer $k$ with $1\leq k\leq 59$ and splits the boxes into the two groups $B_1,\ldots,B_k$ and $B_{k+1},\ldots,B_{60}$. (b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes one pebble from each box in the other group. Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest $n$ such that Alice can prevent Bob from winning. Czech Republic

C8

Alice has a map of Wonderland, a country consisting of $n \geq 2$ towns. For every pair of towns, there is a narrow road going from one town to the other. One day, all the roads are declared to be “one way” only. Alice has no information on the direction of the roads, but the King of Hearts has offered to help her. She is allowed to ask him a number of questions. For each question in turn, Alice chooses a pair of towns and the King of Hearts tells her the direction of the road connecting those two towns. Alice wants to know whether there is at least one town in Wonderland with at most one outgoing road. Prove that she can always find out by asking at most $4n$ questions.

C9

For any two different real numbers $x$ and $y$, we define $D(x,y)$ to be the unique integer $d$ satisfying $2^d\le |x-y| < 2^{d+1}$. Given a set of reals $\mathcal F$, and an element $x\in \mathcal F$, we say that the scales of $x$ in $\mathcal F$ are the values of $D(x,y)$ for $y\in\mathcal F$ with $x\neq y$. Let $k$ be a given positive integer. Suppose that each member $x$ of $\mathcal F$ has at most $k$ different scales in $\mathcal F$ (note that these scales may depend on $x$). What is the maximum possible size of $\mathcal F$?

Geometry

G1

Let $ABC$ be a triangle. Circle $\Gamma$ passes through $A$, meets segments $AB$ and $AC$ again at points $D$ and $E$ respectively, and intersects segment $BC$ at $F$ and $G$ such that $F$ lies between $B$ and $G$. The tangent to circle $BDF$ at $F$ and the tangent to circle $CEG$ at $G$ meet at point $T$. Suppose that points $A$ and $T$ are distinct. Prove that line $AT$ is parallel to $BC$. (Nigeria)

G2

Let $ABC$ be an acute-angled triangle and let $D, E$, and $F$ be the feet of altitudes from $A, B$, and $C$ to sides $BC, CA$, and $AB$, respectively. Denote by $\omega_B$ and $\omega_C$ the incircles of triangles $BDF$ and $CDE$, and let these circles be tangent to segments $DF$ and $DE$ at $M$ and $N$, respectively. Let line $MN$ meet circles $\omega_B$ and $\omega_C$ again at $P \ne M$ and $Q \ne N$, respectively. Prove that $MP = NQ$. (Vietnam)

G3

In triangle $ABC$, point $A_1$ lies on side $BC$ and point $B_1$ lies on side $AC$. Let $P$ and $Q$ be points on segments $AA_1$ and $BB_1$, respectively, such that $PQ$ is parallel to $AB$. Let $P_1$ be a point on line $PB_1$, such that $B_1$ lies strictly between $P$ and $P_1$, and $\angle PP_1C=\angle BAC$. Similarly, let $Q_1$ be the point on line $QA_1$, such that $A_1$ lies strictly between $Q$ and $Q_1$, and $\angle CQ_1Q=\angle CBA$. Prove that points $P,Q,P_1$, and $Q_1$ are concyclic. Proposed by Anton Trygub, Ukraine

G4

Let $P$ be a point inside triangle $ABC$. Let $AP$ meet $BC$ at $A_1$, let $BP$ meet $CA$ at $B_1$, and let $CP$ meet $AB$ at $C_1$. Let $A_2$ be the point such that $A_1$ is the midpoint of $PA_2$, let $B_2$ be the point such that $B_1$ is the midpoint of $PB_2$, and let $C_2$ be the point such that $C_1$ is the midpoint of $PC_2$. Prove that points $A_2, B_2$, and $C_2$ cannot all lie strictly inside the circumcircle of triangle $ABC$. (Australia)

G5

Let $ABCDE$ be a convex pentagon with $CD= DE$ and $\angle EDC \ne 2 \cdot \angle ADB$. Suppose that a point $P$ is located in the interior of the pentagon such that $AP =AE$ and $BP= BC$. Prove that $P$ lies on the diagonal $CE$ if and only if area $(BCD)$ + area $(ADE)$ = area $(ABD)$ + area $(ABP)$. (Hungary)

G6

Let $I$ be the incentre of acute-angled triangle $ABC$. Let the incircle meet $BC, CA$, and $AB$ at $D, E$, and $F,$ respectively. Let line $EF$ intersect the circumcircle of the triangle at $P$ and $Q$, such that $F$ lies between $E$ and $P$. Prove that $\angle DPA + \angle AQD =\angle QIP$. (Slovakia)

G7

Let $I$ be the incentre of acute triangle $ABC$ with $AB\neq AC$. The incircle $\omega$ of $ABC$ is tangent to sides $BC, CA$, and $AB$ at $D, E,$ and $F$, respectively. The line through $D$ perpendicular to $EF$ meets $\omega$ at $R$. Line $AR$ meets $\omega$ again at $P$. The circumcircles of triangle $PCE$ and $PBF$ meet again at $Q$. Prove that lines $DI$ and $PQ$ meet on the line through $A$ perpendicular to $AI$. Proposed by Anant Mudgal, India

G8

Let $\mathcal L$ be the set of all lines in the plane and let $f$ be a function that assigns to each line $\ell\in\mathcal L$ a point $f(\ell)$ on $\ell$. Suppose that for any point $X$, and for any three lines $\ell_1,\ell_2,\ell_3$ passing through $X$, the points $f(\ell_1),f(\ell_2),f(\ell_3)$, and $X$ lie on a circle. Prove that there is a unique point $P$ such that $f(\ell)=P$ for any line $\ell$ passing through $P$. Australia

Number Theory

N1

Find all pairs $(k,n)$ of positive integers such that \[ k!=(2^n-1)(2^n-2)(2^n-4)\cdots(2^n-2^{n-1}). \]Proposed by Gabriel Chicas Reyes, El Salvador

N2

Find all triples $(a, b, c)$ of positive integers such that $a^3 + b^3 + c^3 = (abc)^2$.

N3

We say that a set $S$ of integers is rootiful if, for any positive integer $n$ and any $a_0, a_1, \cdots, a_n \in S$, all integer roots of the polynomial $a_0+a_1x+\cdots+a_nx^n$ are also in $S$. Find all rootiful sets of integers that contain all numbers of the form $2^a - 2^b$ for positive integers $a$ and $b$.

N4

Find all functions $f:\mathbb Z_{>0}\to \mathbb Z_{>0}$ such that $a+f(b)$ divides $a^2+bf(a)$ for all positive integers $a$ and $b$ with $a+b>2019$.

N5

Let $a$ be a positive integer. We say that a positive integer $b$ is $a$-good if $\tbinom{an}{b}-1$ is divisible by $an+1$ for all positive integers $n$ with $an \geq b$. Suppose $b$ is a positive integer such that $b$ is $a$-good, but $b+2$ is not $a$-good. Prove that $b+1$ is prime.

N6

Let $H = \{ \lfloor i\sqrt{2}\rfloor : i \in \mathbb Z_{>0}\} = \{1,2,4,5,7,\dots \}$ and let $n$ be a positive integer. Prove that there exists a constant $C$ such that, if $A\subseteq \{1,2,\dots, n\}$ satisfies $|A| \ge C\sqrt{n}$, then there exist $a,b\in A$ such that $a-b\in H$. (Here $\mathbb Z_{>0}$ is the set of positive integers, and $\lfloor z\rfloor$ denotes the greatest integer less than or equal to $z$.)

N7

Prove that there is a constant $c>0$ and infinitely many positive integers $n$ with the following property: there are infinitely many positive integers that cannot be expressed as the sum of fewer than $cn\log(n)$ pairwise coprime $n$th powers. Canada

N8

Let $a$ and $b$ be two positive integers. Prove that the integer \[a^2+\left\lceil\frac{4a^2}b\right\rceil\]is not a square. (Here $\lceil z\rceil$ denotes the least integer greater than or equal to $z$.) Russia