Problem

Source: IMO SL 2019 A3

Tags: algebra, IMO Shortlist, IMO Shortlist 2019, Sequence



Let $n \geqslant 3$ be a positive integer and let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a strictly increasing sequence of $n$ positive real numbers with sum equal to 2. Let $X$ be a subset of $\{1,2, \ldots, n\}$ such that the value of \[ \left|1-\sum_{i \in X} a_{i}\right| \]is minimised. Prove that there exists a strictly increasing sequence of $n$ positive real numbers $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with sum equal to 2 such that \[ \sum_{i \in X} b_{i}=1. \]