2007 Junior Tuymaada Olympiad

1

Positive integers $ a<b$ are given. Prove that among every $ b$ consecutive positive integers there are two numbers whose product is divisible by $ ab$.

2

Two quadratic trinomials $ f (x) $ and $ g (x) $ differ from each other only by a permutation of coefficients. Could it be that $ f (x) \geq g (x) $ for all real $ x $?

3

A square $ 600 \times 600$ divided into figures of $4$ cells of the forms in the figure: In the figures of the first two types in shaded cells The number $ 2 ^ k $ is written, where $ k $ is the number of the column in which this cell. Prove that the sum of all the numbers written is divisible by $9$.

4

An acute-angle non-isosceles triangle $ ABC $ is given. The point $ H $ is its orthocenter, the points $ O $ and $ I $ are the centers of its circumscribed and inscribed circles, respectively. The circumcircle of the triangle $ OIH $ passes through the vertex $ A $. Prove that one of the angles of the triangle is $ 60^\circ $.

5

What minimum number of colours is sufficient to colour all positive real numbers so that every two numbers whose ratio is 4 or 8 have different colours?

6

One-round chess tournament involves $ 10 $ players from two countries. For a victory, one point is given, for a draw - half a point, for defeat - zero. All players scored a different number of points. Prove that one of the chess players scored in meetings with his countrymen less points, than meeting with players from another country.

7

On the $ AB $ side of the triangle $ ABC $, points $ X $ and $ Y $ are chosen, on the side of $ AC $ is a point of $ Z $, and on the side of $ BC $ is a point of $ T $. Wherein $ XZ \parallel BC $, $ YT \parallel AC $. Line $ TZ $ intersects the circumscribed circle of triangle $ ABC $ at points $ D $ and $ E $. Prove that points $ X $, $ Y $, $ D $ and $ E $ lie on the same circle.

8

Several knights are arranged on an infinite chessboard. No square is attacked by more than one knight (in particular, a square occupied by a knight can be attacked by one knight but not by two). Sasha outlined a $ 14\times 16$ rectangle. What maximum number of knights can this rectangle contain?