Problem

Source: Tuymaada Junior 2007 p7

Tags: geometry, circumcircle, Concyclic, parallel



On the $ AB $ side of the triangle $ ABC $, points $ X $ and $ Y $ are chosen, on the side of $ AC $ is a point of $ Z $, and on the side of $ BC $ is a point of $ T $. Wherein $ XZ \parallel BC $, $ YT \parallel AC $. Line $ TZ $ intersects the circumscribed circle of triangle $ ABC $ at points $ D $ and $ E $. Prove that points $ X $, $ Y $, $ D $ and $ E $ lie on the same circle.