Let $n$ be a natural number, $n \ge 5$, and $a_1, a_2, . . . , a_n$ real numbers such that all possible sums $a_i + a_j$, where $1 \le i < j \le n$, form $\frac{n(n-1)}{2}$ consecutive members of an arithmetic progression when taken in some order. Prove that $a_1 = a_2 = . . . = a_n$.
2015 Estonia Team Selection Test
Day 1
A square-shaped pizza with side length $30$ cm is cut into pieces (not necessarily rectangular). All cuts are parallel to the sides, and the total length of the cuts is $240$ cm. Show that there is a piece whose area is at least $36$ cm$^2$
Let $q$ be a fixed positive rational number. Call number $x$ charismatic if there exist a positive integer $n$ and integers $a_1, a_2, . . . , a_n$ such that $x = (q + 1)^{a_1} \cdot (q + 2)^{a_2} ...(q + n)^{a_n}$. a) Prove that $q$ can be chosen in such a way that every positive rational number turns out to be charismatic. b) Is it true for every $q$ that, for every charismatic number $x$, the number $x + 1$ is charismatic, too?
Day 2
Altitudes $AD$ and $BE$ of an acute triangle $ABC$ intersect at $H$. Let $C_1 (H,HE)$ and $C_2(B,BE)$ be two circles tangent at $AC$ at point $E$. Let $P\ne E$ be the second point of tangency of the circle $C_1 (H,HE)$ with its tangent line going through point $C$, and $Q\ne E$ be the second point of tangency of the circle $C_2(B,BE)$ with its tangent line going through point $C$. Prove that points $D, P$, and $Q$ are collinear.
Find all functions $f$ from reals to reals which satisfy $f (f(x) + f(y)) = f(x^2) + 2x^2 f(y) + (f(y))^2$ for all real numbers $x$ and $y$.
In any rectangular game board with black and white squares, call a row $X$ a mix of rows $Y$ and $Z$ whenever each cell in row $X$ has the same colour as either the cell of the same column in row $Y$ or the cell of the same column in row $Z$. Let a natural number $m \ge 3$ be given. In some rectangular board, black and white squares lie in such a way that all the following conditions hold. 1) Among every three rows of the board, one is a mix of two others. 2) For every two rows of the board, their corresponding cells in at least one column have different colours. 3) For every two rows of the board, their corresponding cells in at least one column have equal colours. 4) It is impossible to add a new row with each cell either black or white to the board in a way leaving both conditions 1) and 2) still in force Find all possibilities of what can be the number of rows of the board.
Day 3
Prove that for every prime number $p$ and positive integer $a$, there exists a natural number $n$ such that $p^n$ contains $a$ consecutive equal digits.
Find all positive integers $n$ for which it is possible to partition a regular $n$-gon into triangles with diagonals not intersecting inside the $n$-gon such that at every vertex of the $n$-gon an odd number of triangles meet.
The orthocenter of an acute triangle $ABC$ is $H$. Let $K$ and $P$ be the midpoints of lines $BC$ and $AH$, respectively. The angle bisector drawn from the vertex $A$ of the triangle $ABC$ intersects with line $KP$ at $D$. Prove that $HD\perp AD$.
Day 4
Let $n$ be an integer and $a, b$ real numbers such that $n > 1$ and $a > b > 0$. Prove that $$(a^n - b^n) \left ( \frac{1}{b^{n- 1}} - \frac{1}{a^{n -1}}\right) > 4n(n -1)(\sqrt{a} - \sqrt{b})^2$$
Let $M$ be the midpoint of the side $AB$ of a triangle $ABC$. A circle through point $C$ that has a point of tangency to the line $AB$ at point $A$ and a circle through point $C$ that has a point of tangency to the line $AB$ at point $B$ intersect the second time at point $N$. Prove that $|CM|^2 + |CN|^2 - |MN|^2 = |CA|^2 + |CB|^2 - |AB|^2$.
Call an $n$-tuple $(a_1, . . . , a_n)$ occasionally periodic if there exist a nonnegative integer $i$ and a positive integer $p$ satisfying $i + 2p \le n$ and $a_{i+j} = a_{i+p+j}$ for every $j = 1, 2, . . . , p$. Let $k$ be a positive integer. Find the least positive integer $n$ for which there exists an $n$-tuple $(a_1, . . . , a_n)$ with elements from set $\{1, 2, . . . , k\}$, which is not occasionally periodic but whose arbitrary extension $(a_1, . . . , a_n, a_{n+1})$ is occasionally periodic for any $a_{n+1} \in \{1, 2, . . . , k\}$.