Let $n$ be an integer and $a, b$ real numbers such that $n > 1$ and $a > b > 0$. Prove that $$(a^n - b^n) \left ( \frac{1}{b^{n- 1}} - \frac{1}{a^{n -1}}\right) > 4n(n -1)(\sqrt{a} - \sqrt{b})^2$$
Source: Estonia IMO TST 2015 p10
Tags: algebra, inequalities
Let $n$ be an integer and $a, b$ real numbers such that $n > 1$ and $a > b > 0$. Prove that $$(a^n - b^n) \left ( \frac{1}{b^{n- 1}} - \frac{1}{a^{n -1}}\right) > 4n(n -1)(\sqrt{a} - \sqrt{b})^2$$