2004 239 Open Mathematical Olympiad

Grade 10-11

1

Given non-constant linear functions $p_1(x), p_2(x), \dots p_n(x)$. Prove that at least $n-2$ of polynomials $p_1p_2\dots p_{n-1}+p_n, p_1p_2\dots p_{n-2} p_n + p_{n-1},\dots p_2p_3\dots p_n+p_1$ have a real root.

2

Do there exist such a triangle $T$, that for any coloring of a plane in two colors one may found a triangle $T'$, equal to $T$, such that all vertices of $T'$ have the same color. proposed by S. Berlov

3

Prove that for any integer $a$ there exist infinitely many positive integers $n$ such that $a^{2^n}+2^n$ is not a prime. proposed by S. Berlov

4

Let the sum of positive reals $a,b,c$ be equal to 1. Prove an inequality \[ \sqrt{{ab}\over {c+ab}}+\sqrt{{bc}\over {a+bc}}+\sqrt{{ac}\over {b+ac}}\le 3/2 \]. proposed by Fedor Petrov

5

The incircle of triangle $ABC$ touches its sides $AB, BC, CA$ in points $C_1, A_1, B_1$ respectively. The point $B_2$ is symmetric to $B_1$ with respect to line $A_1C_1$, lines $BB_2$ and $AC$ meet in point $B_3$. points $A_3$ and $C_3$ may be defined analogously. Prove that points $A_3, B_3$ and $C_3$ lie on a line, which passes through the circumcentre of a triangle $ABC$. proposed by L. Emelyanov

6

Do there exist a set $A\subset [0,1]$ such that $(a)$ $A$ is a finite union of segments of total length $\frac{1}{2}$, $(b)$ The symmetric difference of $A$ and $B:=A/2\cup(A/2+1/2)$ is a union of segments of the total length less than $\frac{1}{10000}$?

7

$200n$ diagonals are drawn in a convex $n$-gon. Prove that one of them intersects at least 10000 others. proposed by D. Karpov, S. Berlov

8

Given a triangle $ABC$. A point $X$ is chosen on a side $AC$. Some circle passes through $X$, touches the side $AC$ and intersects the circumcircle of triangle $ABC$ in points $M$ and $N$ such that the segment $MN$ bisects $BX$ and intersects sides $AB$ and $BC$ in points $P$ and $Q$. Prove that the circumcircle of triangle $PBQ$ passes through a fixed point different from $B$. proposed by Sergej Berlov

Grade 8-9

1

Given non-constant linear functions $p(x), q(x), r(x)$. Prove that at least one of three trinomials $pq+r, pr+q, qr+p$ has a real root. proposed by S. Berlov

2

The incircle of a triangle $ABC$ has centre $I$ and touches sides $AB, BC, CA$ in points $C_1, A_1, B_1$ respectively. Denote by $L$ the foot of a bissector of angle $B$, and by $K$ the point of intersecting of lines $B_1I$ and $A_1C_1$. Prove that $KL\parallel BB_1$. proposed by L. Emelyanov, S. Berlov

Same as grade 10-11, 3 - 3

Same as grade 10-11, 2 - 4

Same as grade 10-11, 4 - 5

6

Given distinct positive integers $a_1,\,a_2,\,\dots,a_n$. Let $b_i = (a_i - a_1) (a_i-a_2) \dots (a_i-a_{i-1}) (a_i-a_{i+1})\dots(a_i-a_n)$. Prove that the least common multiple $[b_1,b_2,\dots,b_n]$ is divisible by $(n-1)!.$

7

Given an isosceles triangle $ABC$ (with $AB=BC$). A point $X$ is chosen on a side $AC$. Some circle passes through $X$, touches the side $AC$ and intersects the circumcircle of triangle $ABC$ in points $M$ and $N$ such that the segment $MN$ bisects $BX$ and intersects sides $AB$ and $BC$ in points $P$ and $Q$. Prove that the circumcircle of triangle $PBQ$ passes through the circumcentre of triangle $ABC$. proposed by Sergej Berlov

Same as grade 10-11, 7 - 8