Problem

Source: 239MO 2004, grade 10-11, problem 1

Tags: function, algebra, polynomial, algebra solved, Polynomials



Given non-constant linear functions $p_1(x), p_2(x), \dots p_n(x)$. Prove that at least $n-2$ of polynomials $p_1p_2\dots p_{n-1}+p_n, p_1p_2\dots p_{n-2} p_n + p_{n-1},\dots p_2p_3\dots p_n+p_1$ have a real root.