2016 Singapore Junior Math Olympiad

2nd Round

1

Find all integers$ n$ such that $n^2 + 24n + 35$ is a square.

2

Let $a_1,a_2,...,a_9$ be a sequence of numbers satisfying $0 < p \le a_i \le q$ for each $i = 1,2,..., 9$. Prove that $\frac{a_1}{a_9}+\frac{a_2}{a_8}+...+\frac{a_9}{a_1} \le 1 + \frac{4(p^2+q^2)}{pq}$

3

In the triangle $ABC$, $\angle A=90^\circ$, the bisector of $\angle B$ meets the altitude $AD$ at the point $E$, and the bisector of $\angle CAD$ meets the side $CD$ at $F$. The line through $F$ perpendicular to $BC$ intersects $AC$ at $G$. Prove that $B,E,G$ are collinear.

4

A group of tourists get on $10$ buses in the outgoing trip. The same group of tourists get on $8$ buses in the return trip. Assuming each bus carries at least $1$ tourist, prove that there are at least $3$ tourists such that each of them has taken a bus in the return trip that has more people than the bus he has taken in the outgoing trip.

5

Determine the minimum number of lines that can be drawn on the plane so that they intersect in exactly $200$ distinct points. (Note that for $3$ distinct points, the minimum number of lines is $3$ and for $4$ distinct points, the minimum is $4$)