Problem

Source: Singapore Junior Math Olympiad 2016 2nd Round p2 SMO

Tags: inequalities, algebra



Let $a_1,a_2,...,a_9$ be a sequence of numbers satisfying $0 < p \le a_i \le q$ for each $i = 1,2,..., 9$. Prove that $\frac{a_1}{a_9}+\frac{a_2}{a_8}+...+\frac{a_9}{a_1} \le 1 + \frac{4(p^2+q^2)}{pq}$