1999 Estonia National Olympiad

grade 9

1

Prove that if $p$ is an odd prime, then $p^2(p^2 -1999)$ is divisible by $6$ but not by $12$.

2

It is known that the quadratic equations $x^2 + 6x + 4a = 0$ and $x^2 + 2bx - 12 = 0$ have a common solution. Prove that then there is a common solution to the quadratic equations $x^2 + 9x + 9a = 0$ and $x^2 + 3bx - 27 = 0$.

3

Let $E$ and $F$ be the midpoints of the lines $AB$ and $DA$ of a square $ABCD$, respectively and let $G$ be the intersection of $DE$ with $CF$. Find the aspect ratio of sidelengths of the triangle $EGC$, $| EG | : | GC | : | CE |$.

4

We build rhombuses from natural numbers. Find the sum of the numbers in the $n$-th rhombus.

5

There is a hole in the roof with dimensions $23 \times 19$ cm. Can August fill the the roof with tiles of dimensions $5 \times 24 \times 30$ cm?

grade 10

1

Find all pairs of integers ($a, b$) such that $a^2 + b = b^{1999}$ .

2

Find all values of $a$ such that absolute value of one of the roots of the equation $x^2 + (a - 2)x - 2a^2 + 5a - 3 = 0$ is twice of absolute value of the other root.

3

The incircle of the triangle $ABC$, with the center $I$ , touches the sides $AB, AC$ and $BC$ in the points $K, L$ and $M$ respectively. Points $P$ and $Q$ are taken on the sides $AC$ and $BC$ respectively, such that $|AP| = |CL|$ and $|BQ| = |CM|$. Prove that the difference of areas of the figures $APIQB$ and $CPIQ$ is equal to the area of the quadrangle $CLIM$

4

$32$ stones, with pairwise different weights, and lever scales without weights are given. How to determine by $35$ scaling, which stone is the heaviest and which is the second by weight?

5

Let $C$ be an interior point of line segment $AB$. Equilateral triangles $ADC$ and $CEB$ are constructed to the same side from $AB$. Find all points which can be the midpoint of the segment $DE$.

grade 11

1

Find all pairs of integers $(m, n)$ such that $(m - n)^2 =\frac{4mn}{m + n - 1}$

2

Find the value of the expression $$f\left( \frac{1}{2000} \right)+f\left( \frac{2}{2000} \right)+...+ f\left( \frac{1999}{2000} \right)+f\left( \frac{2000}{2000} \right)+f\left( \frac{2000}{1999} \right)+...+f\left( \frac{2000}{1} \right)$$assuming $f(x) =\frac{x^2}{1 + x^2}$ .

3

For which values of $n$ it is possible to cover the side wall of staircase of n steps (for $n = 6$ in the figure) with plates of shown shape? The width and height of each step is $1$ dm, the dimensions of plate are $2 \times 2$ dm and from the corner there is cut out a piece with dimensions $1\times 1$ dm.

4

For the given triangle $ABC$, prove that a point $X$ on the side $AB$ satisfies the condition $\overrightarrow{XA} \cdot\overrightarrow{XB} +\overrightarrow{XC} \cdot \overrightarrow{XC} = \overrightarrow{CA} \cdot \overrightarrow{CB} $, iff $X$ is the basepoint of the altitude or median of the triangle $ABC$.

5

On the squares $a1, a2,... , a8$ of a chessboard there are respectively $2^0, 2^1, ..., 2^7$ grains of oat, on the squares $b8, b7,..., b1$ respectively $2^8, 2^9, ..., 2^{15}$ grains of oat, on the squares $c1, c2,..., c8$ respectively $2^{16}, 2^{17}, ..., 2^{23}$ grains of oat etc. (so there are $2^{63}$ grains of oat on the square $h1$). A knight starts moving from some square and eats after each move all the grains of oat on the square to which it had jumped, but immediately after the knight leaves the square the same number of grains of oat reappear. With the last move the knight arrives to the same square from which it started moving. Prove that the number of grains of oat eaten by the knight is divisible by $3$.

grade 12

1

Let $a, b, c$ and $d$ be non-negative integers. Prove that the numbers $2^a7^b$ and $2^c7^d$ give the same remainder when divided by $15$ iff the numbers $3^a5^b$ and $3^c5^d$ give the same remainder when divided by $16$.

2

Find the value of the integral $\int_{-1}^{1} ln \left(x +\sqrt{1 + x^2}\right) dx$.

3

Prove that the line segment, joining the orthocenter and the intersection point of the medians of the acute-angled triangle $ABC$ is parallel to the side $AB$ iff $\tan \angle A \cdot \tan \angle B = 3$.

4

Let us put pieces on some squares of $2n \times 2n$ chessboard in such a way that on every horizontal and vertical line there is an odd number of pieces. Prove that the whole number of pieces on the black squares is even.

5

The numbers $0, 1, 2, . . . , 9$ are written (in some order) on the circumference. Prove that a) there are three consecutive numbers with the sum being at least $15$, b) it is not necessarily the case that there exist three consecutive numbers with the sum more than $15$.