The incircle of the triangle $ABC$, with the center $I$ , touches the sides $AB, AC$ and $BC$ in the points $K, L$ and $M$ respectively. Points $P$ and $Q$ are taken on the sides $AC$ and $BC$ respectively, such that $|AP| = |CL|$ and $|BQ| = |CM|$. Prove that the difference of areas of the figures $APIQB$ and $CPIQ$ is equal to the area of the quadrangle $CLIM$
Problem
Source: 1999 Estonia National Olympiad Final Round grade 10 p3
Tags: geometry, areas, incircle