2019 Turkey Junior National Olympiad

1

Solve $2a^2+3a-44=3p^n$ in positive integers where $p$ is a prime.

2

$x,y,z \in \mathbb{R}^+$ and $x^5+y^5+z^5=xy+yz+zx$. Prove that $$3 \ge x^2y+y^2z+z^2x$$

3

In $ABC$ triangle $I$ is incenter and incircle of $ABC$ tangents to $BC,AC,AB$ at $D,E,F$, respectively. If $AI$ intersects $DE$ and $DF$ at $P$ and $Q$, prove that the circumcenter of $DPQ$ triangle is the midpoint of $BC$.

4

There are $27$ cardboard and $27$ plastic boxes. There are balls of certain colors inside the boxes. It is known that any two boxes of the same kind do not have a ball with the same color. Boxes of different kind have at least one ball of the same color. At each step we select two boxes that have a ball of same color and switch this common color into any other color we wish. Find the smallest number $n$ of moves required.