Problem

Source: Turkey Junior Math Olympiad 2019 #3

Tags: geometry, geometry proposed, incenter, circumcircle



In $ABC$ triangle $I$ is incenter and incircle of $ABC$ tangents to $BC,AC,AB$ at $D,E,F$, respectively. If $AI$ intersects $DE$ and $DF$ at $P$ and $Q$, prove that the circumcenter of $DPQ$ triangle is the midpoint of $BC$.