Let $a_1, a_2, \dots, a_n$ be a sequence of real numbers, and let $m$ be a fixed positive integer less than $n$. We say an index $k$ with $1\le k\le n$ is good if there exists some $\ell$ with $1\le \ell \le m$ such that $a_k+a_{k+1}+...+a_{k+\ell-1}\ge0$, where the indices are taken modulo $n$. Let $T$ be the set of all good indices. Prove that $\sum\limits_{k \in T}a_k \ge 0$. Proposed by Mark Sellke
2015 USA TSTST
Day 1
Let ABC be a scalene triangle. Let $K_a$, $L_a$ and $M_a$ be the respective intersections with BC of the internal angle bisector, external angle bisector, and the median from A. The circumcircle of $AK_aL_a$ intersects $AM_a$ a second time at point $X_a$ different from A. Define $X_b$ and $X_c$ analogously. Prove that the circumcenter of $X_aX_bX_c$ lies on the Euler line of ABC. (The Euler line of ABC is the line passing through the circumcenter, centroid, and orthocenter of ABC.) Proposed by Ivan Borsenco
Let $P$ be the set of all primes, and let $M$ be a non-empty subset of $P$. Suppose that for any non-empty subset ${p_1,p_2,...,p_k}$ of $M$, all prime factors of $p_1p_2...p_k+1$ are also in $M$. Prove that $M=P$. Proposed by Alex Zhai
Day 2
Let $x$, $y$, and $z$ be real numbers (not necessarily positive) such that $x^4+y^4+z^4+xyz=4$. Show that $x\le2$ and $\sqrt{2-x}\ge\frac{y+z}{2}$. Proposed by Alyazeed Basyoni
Let $\varphi(n)$ denote the number of positive integers less than $n$ that are relatively prime to $n$. Prove that there exists a positive integer $m$ for which the equation $\varphi(n)=m$ has at least $2015$ solutions in $n$. Proposed by Iurie Boreico
A Nim-style game is defined as follows. Two positive integers $k$ and $n$ are specified, along with a finite set $S$ of $k$-tuples of integers (not necessarily positive). At the start of the game, the $k$-tuple $(n, 0, 0, ..., 0)$ is written on the blackboard. A legal move consists of erasing the tuple $(a_1,a_2,...,a_k)$ which is written on the blackboard and replacing it with $(a_1+b_1, a_2+b_2, ..., a_k+b_k)$, where $(b_1, b_2, ..., b_k)$ is an element of the set $S$. Two players take turns making legal moves, and the first to write a negative integer loses. In the event that neither player is ever forced to write a negative integer, the game is a draw. Prove that there is a choice of $k$ and $S$ with the following property: the first player has a winning strategy if $n$ is a power of 2, and otherwise the second player has a winning strategy. Proposed by Linus Hamilton