Problem

Source: TSTST 2015 Problem 3

Tags: number theory



Let $P$ be the set of all primes, and let $M$ be a non-empty subset of $P$. Suppose that for any non-empty subset ${p_1,p_2,...,p_k}$ of $M$, all prime factors of $p_1p_2...p_k+1$ are also in $M$. Prove that $M=P$. Proposed by Alex Zhai