2015 Dutch IMO TST

Day 1

1

In a quadrilateral $ABCD$ we have $\angle A = \angle C = 90^o$. Let $E$ be a point in the interior of $ABCD$. Let $M$ be the midpoint of $BE$. Prove that $\angle ADB = \angle EDC$ if and only if $|MA| = |MC|$.

2

Determine all polynomials P(x) with real coefficients such that [(x + 1)P(x − 1) − (x − 1)P(x)] is a constant polynomial.

3

Let $n$ be a positive integer. Consider sequences $a_0, a_1, ..., a_k$ and $b_0, b_1,,..,b_k$ such that $a_0 = b_0 = 1$ and $a_k = b_k = n$ and such that for all $i$ such that $1 \le i \le k $, we have that $(a_i, b_i)$ is either equal to $(1 + a_{i-1}, b_{i-1})$ or $(a_{i-1}; 1 + b_{i-1})$. Consider for $1 \le i \le k$ the number $c_i = \begin{cases} a_i \,\,\, if \,\,\, a_i = a_{i-1} \\ b_i \,\,\, if \,\,\, b_i = b_{i-1}\end{cases}$ Show that $c_1 + c_2 + ... + c_k = n^2 - 1$.

4

Let $\Gamma_1$ and $\Gamma_2$ be circles - with respective centres $O_1$ and $O_2$ - that intersect each other in $A$ and $B$. The line $O_1A$ intersects $\Gamma_2$ in $A$ and $C$ and the line $O_2A$ intersects $\Gamma_1$ in $A$ and $D$. The line through $B$ parallel to $AD$ intersects $\Gamma_1$ in $B$ and $E$. Suppose that $O_1A$ is parallel to $DE$. Show that $CD$ is perpendicular to $O_2C$.

5

For a positive integer $n$, we dene $D_n$ as the largest integer that is a divisor of $a^n + (a + 1)^n + (a + 2)^n$ for all positive integers $a$. 1. Show that for all positive integers $n$, the number $D_n$ is of the form $3^k$ with $k \ge 0$ an integer. 2. Show that for all integers $k \ge 0$ there exists a positive integer n such that $D_n = 3^k$.

Day 2

1

Let $a$ and $b$ be two positive integers satifying $gcd(a, b) = 1$. Consider a pawn standing on the grid point $(x, y)$. A step of type A consists of moving the pawn to one of the following grid points: $(x+a, y+a),(x+a,y-a), (x-a, y + a)$ or $(x - a, y - a)$. A step of type B consists of moving the pawn to $(x + b,y + b),(x + b,y - b), (x - b,y + b)$ or $(x - b,y - b)$. Now put a pawn on $(0, 0)$. You can make a (nite) number of steps, alternatingly of type A and type B, starting with a step of type A. You can make an even or odd number of steps, i.e., the last step could be of either type A or type B. Determine the set of all grid points $(x,y)$ that you can reach with such a series of steps.

2

Determine all positive integers $n$ for which there exist positive integers $a_1,a_2, ..., a_n$ with $a_1 + 2a_2 + 3a_3 +... + na_n = 6n$ and $\frac{1}{a_1}+\frac{2}{a_2}+\frac{3}{a_3}+ ... +\frac{n}{a_n}= 2 + \frac1n$

3

An equilateral triangle $ABC$ is given. On the line through $B$ parallel to $AC$ there is a point $D$, such that $D$ and $C$ are on the same side of the line $AB$. The perpendicular bisector of $CD$ intersects the line $AB$ in $E$. Prove that triangle $CDE$ is equilateral.

4

Each of the numbers $1$ up to and including $2014$ has to be coloured; half of them have to be coloured red the other half blue. Then you consider the number $k$ of positive integers that are expressible as the sum of a red and a blue number. Determine the maximum value of $k$ that can be obtained.

5

Let $N$ be the set of positive integers. Find all the functions $f: N\to N$ with $f (1) = 2$ and such that $max \{f(m)+f(n), m+n\}$ divides $min\{2m+2n,f (m+ n)+1\}$ for all $m, n$ positive integers